Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 324
Filtrar
1.
Postgrad Med ; 136(2): 218-225, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38453649

RESUMO

OBJECTIVES: The factors determining the response to treatment with glucagon-like peptide-1 receptor agonists (GLP-1- RAs) have not been clarified. The present study investigated the association between polymorphisms in TCF7L2, CTRB1/2, and GLP-1 R genes and response to GLP-1 RAs regarding glycemic control and weight loss among Greek patients with type 2 diabetes mellitus (T2DM). METHODS: Patients (n = 191) treated with GLP-1 RAs for at least 6 months were included. Participants were genotyped for TCF7L2 rs7903146 (C>T), CTRB1/2 rs7202877 (T>G) and GLP-1 R rs367543060 (C>T) polymorphisms. Clinical and laboratory parameters were measured before, 3, and 6 months after treatment initiation. The patients were classified into responders and non-responders according to specific criteria. RESULTS: Carriers of at least one rs7903146 'T' allele and rs7202877 'G' allele presented similar glucose control and weight loss response to GLP-1 RAs with the respective homozygous wild-type genotypes [odds ratio (OR): 1.08, 95% confidence interval (CI): 0.5, 2.31, p = 0.85 and OR: 1.35, 95% CI: 0.66, 2.76, p = 0.42; OR: 1.4, 95% CI: 0.56, 3.47, p = 0.47 and OR: 1.28, 95% CI: 0.55, 2.98, p = 0.57, respectively]. Regarding the GLP-1 R polymorphism, all participants were homozygous for the wild-type allele; thus, no comparisons were feasible. Female sex (p = 0.03) and lower baseline weight (p = 0.024) were associated with an improved glycemic and weight loss response, respectively. CONCLUSION: There is no evidence suggesting a role for the variants studied in response to GLP-1 RA therapy in people with T2DM. However, specific demographic and clinical factors may be related to a better response to treatment with these agents.


Assuntos
Diabetes Mellitus Tipo 2 , Receptor do Peptídeo Semelhante ao Glucagon 1 , Hipoglicemiantes , Proteína 2 Semelhante ao Fator 7 de Transcrição , Redução de Peso , Humanos , Feminino , Masculino , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Receptor do Peptídeo Semelhante ao Glucagon 1/genética , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/genética , Proteína 2 Semelhante ao Fator 7 de Transcrição/genética , Pessoa de Meia-Idade , Redução de Peso/genética , Redução de Peso/efeitos dos fármacos , Idoso , Hipoglicemiantes/uso terapêutico , Polimorfismo de Nucleotídeo Único , Grécia , Genótipo , Glicemia/efeitos dos fármacos , 60650
2.
Diabetes Metab Syndr ; 18(2): 102956, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38364583

RESUMO

OBJECTIVE: Glucagon-like peptide-1 receptor belongs to the B family of G protein-coupled receptors, serving as a binding protein in membranes and is widely expressed in human tissues. Upon stimulation by its agonist, the glucagon-like peptide-1, the receptor plays a role in glucose metabolism, enhancing insulin secretion, and regulating appetite in the hypothalamus. Mutations in the glucagon-like peptide-1 receptor gene can lead to physiological changes that may explain phenotypic variations in individuals with obesity and diabetes. Therefore, this study aimed to evaluate missense variants of the glucagon-like peptide-1 receptor gene. METHODS: Data mining was performed on the single nucleotide polymorphism database, retrieving a total of 16,399 variants. Among them, 356 were missense. These 356 variants were analyzed using the PolyPhen-2 and filtered based on allele frequency, resulting in 6 pathogenic variants. RESULTS: D344E, A239T, R310Q, R227H, R421P, and R176G were analyzed using four different prediction tools. The D344E and A239T resulted in larger amino acid residues compared to their wild-type counterparts. The D344E showed a slightly destabilized structure, while A239T affected the transmembrane helices. Conversely, the R310Q, R227H, R421P, and R176G resulted in smaller amino acid residues than the wild-type, leading to a loss of positive charge and increased hydrophobicity. Particularly, the R421P, due to the presence of proline, significantly destabilized the α-helix structure and caused severe damage to the receptor. CONCLUSION: Elucidating the glucagon-like peptide-1 receptor variants and their potentially detrimental effects on receptor functionality can contribute to an understanding of metabolic diseases and the response to available pharmacological treatments.


Assuntos
Diabetes Mellitus , Incretinas , Humanos , Aminoácidos , Glucagon , Receptor do Peptídeo Semelhante ao Glucagon 1/genética , Incretinas/metabolismo , Obesidade/genética , Fenótipo
3.
Peptides ; 175: 171179, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38360354

RESUMO

Glucagon-like peptide-1 receptor (GLP1R) and glucose-dependent insulinotropic polypeptide receptor (GIPR) are transmembrane receptors involved in insulin, glucagon and somatostatin secretion from the pancreatic islet. Therapeutic targeting of GLP1R and GIPR restores blood glucose levels in part by influencing beta cell, alpha cell and delta cell function. Despite the importance of the incretin-mimetics for diabetes therapy, our understanding of GLP1R and GIPR expression patterns and signaling within the islet remain incomplete. Here, we present the evidence for GLP1R and GIPR expression in the major islet cell types, before addressing signaling pathway(s) engaged, as well as their influence on cell survival and function. While GLP1R is largely a beta cell-specific marker within the islet, GIPR is expressed in alpha cells, beta cells, and (possibly) delta cells. GLP1R and GIPR engage Gs-coupled pathways in most settings, although the exact outcome on hormone release depends on paracrine communication and promiscuous signaling. Biased agonism away from beta-arrestin is an emerging concept for improving therapeutic efficacy, and is also relevant for GLP1R/GIPR dual agonism. Lastly, dual agonists exert multiple effects on islet function through GIPR > GLP1R imbalance, increased GLP1R surface expression and cAMP signaling, as well as beneficial alpha cell-beta cell-delta cell crosstalk.


Assuntos
Células Secretoras de Glucagon , Receptores dos Hormônios Gastrointestinais , Células Secretoras de Somatostatina/metabolismo , Células Secretoras de Glucagon/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/genética , Receptores dos Hormônios Gastrointestinais/metabolismo , Polipeptídeo Inibidor Gástrico/genética , Polipeptídeo Inibidor Gástrico/metabolismo , Transdução de Sinais
4.
Adv Ther ; 41(2): 826-836, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38172377

RESUMO

INTRODUCTION: Pharmacogenetics studies suggest that genetic variants have a possible influence on the inter-individual differences in therapeutic response to glucagon-like peptide 1 receptor agonists (GLP-1 RAs). We aimed to examine the potential role of genetic variability of glucagon-like peptide 1 receptor (GLP-1R) on glycemic response to GLP-1 RAs in a population of Iranian people with type 2 diabetes mellitus (T2DM). METHODS: In this study, we analyzed the data from participants in a non-inferiority randomized clinical trial between 2019 and 2020. Patients received liraglutide 1.8 mg/day subcutaneously for 24 weeks. They were stratified by the baseline hemoglobin A1c (HbA1c) into four categories: 7-7.99, 8-8.99, 9-9.99, and ≥ 10%. In each category, subjects with HbA1c reduction greater than the median ΔHbA1c value for that group were defined as optimal responders. The pooled number of optimal/suboptimal responders in the four groups was used for the comparison. We evaluated two genetic variants of GLP-1R, rs6923761 and rs10305420, using Sanger sequencing. Logistic regression analyses were performed to examine the associations of the GLP-1R variants with the glycemic response in different genetic models. RESULTS: Out of 233 participants, 120 individuals were optimal responders. Median HbA1c reduction was - 2.5% in the optimal responder group compared with - 1.0% in the suboptimal responder group (P < 0.001). In genetic models, rs10305420 T allele homozygosity was associated with optimal glycemic response to liraglutide compared with heterozygous and wild-type homozygous states (recessive model: OR 3.28, 95% CI 1.41-7.65, P = 0.006; codominant model: OR 2.52, 95% CI 1.03-6.13, P = 0.04). No significant association was found between rs6923761 variant and HbA1c reduction. CONCLUSION: GLP-1R rs10305420 polymorphism can explain some of the inter-individual differences in glycemic response to liraglutide in a population of Iranian people with T2DM.


Assuntos
Diabetes Mellitus Tipo 2 , 60650 , Receptor do Peptídeo Semelhante ao Glucagon 1 , Hipoglicemiantes , Liraglutida , População do Oriente Médio , Humanos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/complicações , Peptídeo 1 Semelhante ao Glucagon/uso terapêutico , Receptor do Peptídeo Semelhante ao Glucagon 1/genética , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Hemoglobinas Glicadas , Hipoglicemiantes/uso terapêutico , Irã (Geográfico) , Liraglutida/farmacologia , Liraglutida/uso terapêutico , Farmacogenética , 60650/uso terapêutico
5.
Int J Obes (Lond) ; 48(3): 324-329, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37978261

RESUMO

BACKGROUND: Both genetic and epigenetic variations of GLP1R influence the development and progression of obesity. However, the underlying mechanism remains elusive. This study aims to explore the mediation roles of obesity-related methylation sites in GLP1R gene variants-obesity association. METHODS: A total of 300 Chinese adult participants were included in this study and classified into two groups: 180 metabolically healthy obesity (MHO) cases and 120 metabolically healthy normal-weight (MHNW) controls. Questionnaire investigation, physical measurement and laboratory examination were assessed in all participants. 18 single nucleotide polymorphisms (SNPs) and 31 CpG sites were selected for genotype and methylation assays. Causal inference test (CIT) was performed to evaluate the associations between GLP1R genetic variation, DNA methylation and MHO. RESULTS: The study found that rs4714211 polymorphism of GLP1R gene was significantly associated with MHO. Additionally, methylation sites in the intronic region of GLP1R (GLP1R-68-CpG 7.8.9; GLP1R-68-CpG 12.13; GLP1R-68-CpG 17; GLP1R-68-CpG 21) were associated with MHO, and two of these methylation sites (GLP1R-68-CpG 7.8.9; GLP1R-68-CpG 17) partially mediated the association between genotypes and MHO. CONCLUSIONS: Not only the gene polymorphism, but also the DNA methylation of GLP1R was associated with MHO. Epigenetic changes in the methylome may in part explain the relationship between genetic variants and MHO.


Assuntos
Epigênese Genética , Receptor do Peptídeo Semelhante ao Glucagon 1 , Obesidade Metabolicamente Benigna , Adulto , Humanos , Causalidade , Obesidade Metabolicamente Benigna/diagnóstico , Fatores de Risco , Receptor do Peptídeo Semelhante ao Glucagon 1/genética
6.
Kidney Int ; 105(1): 132-149, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38069998

RESUMO

Glucagon like peptide-1 (GLP-1) is a hormone produced and released by cells of the gastrointestinal tract following meal ingestion. GLP-1 receptor agonists (GLP-1RA) exhibit kidney-protective actions through poorly understood mechanisms. Here we interrogated whether the receptor for advanced glycation end products (RAGE) plays a role in mediating the actions of GLP-1 on inflammation and diabetic kidney disease. Mice with deletion of the GLP-1 receptor displayed an abnormal kidney phenotype that was accelerated by diabetes and improved with co-deletion of RAGE in vivo. Activation of the GLP-1 receptor pathway with liraglutide, an anti-diabetic treatment, downregulated kidney RAGE, reduced the expansion of bone marrow myeloid progenitors, promoted M2-like macrophage polarization and lessened markers of kidney damage in diabetic mice. Single cell transcriptomics revealed that liraglutide induced distinct transcriptional changes in kidney endothelial, proximal tubular, podocyte and macrophage cells, which were dominated by pathways involved in nutrient transport and utilization, redox sensing and the resolution of inflammation. The kidney-protective action of liraglutide was corroborated in a non-diabetic model of chronic kidney disease, the subtotal nephrectomised rat. Thus, our findings identify a novel glucose-independent kidney-protective action of GLP-1-based therapies in diabetic kidney disease and provide a valuable resource for exploring the cell-specific kidney transcriptional response ensuing from pharmacological GLP-1R agonism.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Ratos , Camundongos , Animais , Receptor para Produtos Finais de Glicação Avançada/genética , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Nefropatias Diabéticas/etiologia , Nefropatias Diabéticas/genética , Liraglutida/farmacologia , Liraglutida/uso terapêutico , Receptor do Peptídeo Semelhante ao Glucagon 1/genética , Diabetes Mellitus Experimental/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Peptídeo 1 Semelhante ao Glucagon/farmacologia , Peptídeo 1 Semelhante ao Glucagon/uso terapêutico , Inflamação
7.
PLoS One ; 18(12): e0295451, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38096145

RESUMO

Postmenopausal osteoporosis (PMOP) is a prevalent form of primary osteoporosis, affecting over 40% of postmenopausal women. Previous studies have suggested a potential association between single nucleotide polymorphisms (SNPs) in glucagon-like peptide-1 receptor (GLP-1R) and PMOP in postmenopausal Chinese women. However, available evidence remains inconclusive. Therefore, this study aimed to investigate the possible association between GLP-1R SNPs and PMOP in Han Chinese women. Thus, we conducted a case-control study with 152 postmenopausal Han Chinese women aged 45-80 years, including 76 women with osteoporosis and 76 without osteoporosis. Seven SNPs of the GLP-1R were obtained from the National Center of Biotechnology Information and Genome Variation Server. We employed three genetic models to assess the association between GLP-1R genetic variants and osteoporosis in postmenopausal women, while also investigating SNP-SNP and SNP-environment interactions with the risk of PMOP. In this study, we selected seven GLP-1R SNPs (rs1042044, rs2268641, rs10305492, rs6923761, rs1126476, rs2268657, and rs2295006). Of these, the minor allele A of rs1042044 was significantly associated with an increased risk of PMOP. Genetic model analysis revealed that individuals carrying the A allele of rs1042044 had a higher risk of developing osteoporosis in the dominant model (P = 0.029, OR = 2.76, 95%CI: 1.09-6.99). Furthermore, a multiplicative interaction was found between rs1042044 and rs2268641 that was associated with osteoporosis in postmenopausal women (Pinteraction = 0.034). Importantly, this association remained independent of age, menopausal duration, family history of osteoporosis, and body mass index. However, no significant relationship was observed between GLP-1R haplotypes and PMOP. In conclusion, this study suggests a close association between the A allele on the GLP-1R rs1042044 and an increased risk of PMOP. Furthermore, this risk was significantly augmented by an SNP-SNP interaction with rs2268641. These results provide new scientific insights into the development of personalized prevention strategies and treatment approaches for PMOP.


Assuntos
Predisposição Genética para Doença , Osteoporose Pós-Menopausa , Feminino , Humanos , Estudos de Casos e Controles , China/epidemiologia , Receptor do Peptídeo Semelhante ao Glucagon 1/genética , Osteoporose Pós-Menopausa/genética , Polimorfismo de Nucleotídeo Único , Pós-Menopausa/genética
8.
Acta Biochim Biophys Sin (Shanghai) ; 55(12): 1855-1863, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37969012

RESUMO

Glucose is essential to the physiological processes of vertebrates. Mammalian physiological stability requires a relatively stable blood glucose level (~5 mM), whereas other vertebrates have greater flexibility in regulating blood glucose (0.5-25 mM). GCGR family receptors play an important role in vertebrate glucose regulation. Here, we examine the evolution of the GCGR family ligand-receptor systems in different species. Comparatively, we discover that the conserved sequences among GCG family ligands lead to the non-specific activation of ligands across species. In particular, we observe that glucagon-like peptide 1 receptor (GLP1R), glucagon-like peptide 2 receptor (GLP2R), and glucagon-like receptor (GCGLR, also called GCRPR) are arbitrarily activated by other members of the ligand family in birds. Moreover, we reveal that Gallus gallus GLP2 (gGLP2) effectively activates mammalian GLP1R and improves glucose tolerance in diabetic mice. Our study has important implications for understanding blood glucose stabilization in vertebrates and demonstrates that gGLP2 may be a potential drug for treating type 2 diabetes.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Hiperglicemia , Animais , Camundongos , Glicemia , Receptores de Glucagon , Diabetes Mellitus Tipo 2/tratamento farmacológico , Ligantes , Glucose , Hiperglicemia/tratamento farmacológico , Mamíferos , Receptor do Peptídeo Semelhante ao Glucagon 1/genética
9.
Int J Mol Sci ; 24(20)2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37894845

RESUMO

Insulinomas are rare functional pancreatic neuroendocrine tumours, which metastasize in 10% of cases. As predicting the prognosis can be challenging, there is a need for the determination of clinicopathological factors associated with metastatic potential. The aim of this study is to evaluate the glucagon-like peptide-1 receptor (GLP-1R) expression in insulinomas and to analyse its association with clinicopathological features and patient outcome. This retrospective study involves pancreatic tumour tissue samples from fifty-two insulinoma patients. After histological re-evaluation, formalin-fixed paraffin-embedded tissue samples were processed into tissue microarrays and stained immunohistochemically with a monoclonal GLP-1R antibody. Forty-eight of the forty-nine (98%) non-metastatic tumours expressed GLP-1R, while one non-metastatic, multiple endocrine neoplasia type 1 (MEN1)-related tumour and all three of the metastatic tumours lacked GLP-1R expression. The lack of GLP-1R expression was associated with impaired overall survival, larger tumour diameter, higher Ki-67 PI and weaker insulin staining. Somatostatin receptor 1-5 expression did not differ between GLP-1R-positive and GLP-1R-negative insulinomas. In conclusion, the lack of GLP-1R expression is associated with metastatic disease and impaired survival in insulinoma patients. Thus, GLP-1R expression could be a useful biomarker in estimating the metastatic potential of the tumour and the prognosis of surgically treated patients.


Assuntos
Insulinoma , Neoplasias Pancreáticas , Humanos , Anticorpos Monoclonais , Receptor do Peptídeo Semelhante ao Glucagon 1/genética , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Insulina/metabolismo , Insulinoma/metabolismo , Neoplasias Pancreáticas/metabolismo , Estudos Retrospectivos
10.
PeerJ ; 11: e15705, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37520251

RESUMO

Background: Oleanolic acid (OA) and moderate drinking have been reported to attenuate diabetes. However, the underlying mechanism of OA and moderate drinking alone or in combination on the islet ß-cell deficiency induced diabetes is not fully elucidated. Methods: Male Sprague Dawley (SD) rats were intraperitoneally injected with 55 mg/kg streptozotocin (STZ) to induce ß-cell deficiency. OA, 5% ethanol (EtOH), or a mixture of OA in 5% ethanol (OA+EtOH) were applied to three treatment groups of hyperglycemia rats for 6 weeks. Results: STZ caused the increase of fast blood glucose (FBG) level.OA and EtOH treatment alone or in combination decreased the STZ increased FBG level during the 6 weeks of treatment. In addition, OA treatment also significantly increased the ß-cell to total islet cell ratio. Both EtOH and OA+EtOH treatments promoted the increase of total islet cell number and α-cell to ß-cell ratio when compared to OA group. STZ induced hyperglycemia dramatically reduced the glucagon-like peptide-1 receptor (GLP-1R) positive cells in islets, all the three treatments significantly increased the pancreatic GLP-1R positive cell number. In the meantime, STZ induced hyperglycemia suppressed the insulin mRNA expression and boosted the glucagon mRNA expression. EtOH and OA+EtOH treatments increased the insulin mRNA expression, but none of the 3 treatments altered the elevated glucagon level. Conclusion: GLP-1R positive cell ratio in islets is crucial for the blood glucose level of diabetes. OA and 5% ethanol alone or in combination suppresses the blood glucose level of ß-cell deficiency induced diabetes by increasing islet GLP-1R expression.


Assuntos
Células Secretoras de Glucagon , Hiperglicemia , Ácido Oleanólico , Masculino , Ratos , Animais , Glucagon , Receptor do Peptídeo Semelhante ao Glucagon 1/genética , Ácido Oleanólico/farmacologia , Glicemia/metabolismo , Ratos Sprague-Dawley , Insulina , Células Secretoras de Glucagon/metabolismo , RNA Mensageiro
11.
Int J Mol Sci ; 24(14)2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37511368

RESUMO

Excess hepatic lipid accumulation is the hallmark of non-alcoholic fatty liver disease (NAFLD), for which no medication is currently approved. However, glucagon-like peptide-1 receptor agonists (GLP-1RAs), already approved for treating type 2 diabetes, have lately emerged as possible treatments. Herein we aim to investigate how the GLP-1RA exendin-4 (Ex-4) affects the microRNA (miRNAs) expression profile using an in vitro model of steatosis. Total RNA, including miRNAs, was isolated from control, steatotic, and Ex-4-treated steatotic cells and used for probing a panel of 799 highly curated miRNAs using NanoString technology. Enrichment pathway analysis was used to find the signaling pathways and cellular functions associated with the differentially expressed miRNAs. Our data shows that Ex-4 reversed the expression of a set of miRNAs. Functional enrichment analysis highlighted many relevant signaling pathways and cellular functions enriched in the differentially expressed miRNAs, including hepatic fibrosis, insulin receptor, PPAR, Wnt/ß-Catenin, VEGF, and mTOR receptor signaling pathways, fibrosis of the liver, cirrhosis of the liver, proliferation of hepatic stellate cells, diabetes mellitus, glucose metabolism disorder and proliferation of liver cells. Our findings suggest that miRNAs may play essential roles in the processes driving steatosis reduction in response to GLP-1R agonists, which warrants further functional investigation.


Assuntos
Diabetes Mellitus Tipo 2 , MicroRNAs , Hepatopatia Gordurosa não Alcoólica , Humanos , Exenatida/farmacologia , MicroRNAs/genética , MicroRNAs/uso terapêutico , Células Hep G2 , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/genética , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Cirrose Hepática , Receptor do Peptídeo Semelhante ao Glucagon 1/genética
12.
Redox Rep ; 28(1): 2218684, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37278349

RESUMO

OBJECTIVE: To investigate the effects of glucagon-like peptide 1 receptor (GLP-1R) agonist liraglutide on endothelial dysfunction in LDL receptor-deficient (LDLR-KO) mice and ox-LDL-challenged human umbilical vein endothelial cells (HUVECs) and its possible mechanism. METHODS: LDLR-KO mice were randomly treated with normal saline, liraglutide, or liraglutide plus a GLP-1R antagonist exendin-9 for four weeks. In parallel, HUVECs were cultured with ox-LDL alone or combined with liraglutide, in the presence or absence of lectin-like ox-LDL receptor-1(LOX-1) overexpression or GLP-1R knockdown. Endothelial-dependent relaxation and LOX-1 protein expression of thoracic aorta, circulating levels of oxidative and inflammatory markers in mice, and cell survival, reactive oxygen species production, and expression of adhesion molecules and signal regulators in ox-LDL cultured endothelial cells were measured. RESULTS: liraglutide effectively enhanced acetylcholine-induced vasodilation, reduced LOX-1 expression in aortas, and decreased circulatory oxidative and inflammatory levels in LDLR-KO mice, which were abolished by cotreatment with exendin-9. HUVECs exposed to ox-LDL exhibited reduced cell viability, increased reactive oxygen species production and apoptosis, and elevated protein expression of ICAM-1, VCAM-1, LOX-1, NOX4, and NF-κB, which were markedly ameliorated by liraglutide treatment. The protective effects of liraglutide against ox-LDL-induced cell injury were abrogated in HUVECs overexpressing LOX-1 or silencing GLP-1R. CONCLUSIONS: Liraglutide improved oxidized LDL-induced endothelial dysfunction via GLP-1R-dependent downregulation of LOX-1-mediated oxidative stress and inflammation.


Assuntos
Liraglutida , Doenças Vasculares , Humanos , Animais , Camundongos , Liraglutida/farmacologia , Liraglutida/uso terapêutico , Liraglutida/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Regulação para Baixo , Receptor do Peptídeo Semelhante ao Glucagon 1/genética , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Lipoproteínas LDL/metabolismo , Estresse Oxidativo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Doenças Vasculares/metabolismo , Receptores Depuradores Classe E/genética , Receptores Depuradores Classe E/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo
13.
Mol Cell Neurosci ; 126: 103873, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37295578

RESUMO

A relatively new pharmacological target in obesity treatment has been the preproglucagon (PPG) signalling, predominantly with glucagon-like peptide (GLP) 1 receptor agonists. As far as the PPG role within the digestive system is well recognised, its actions in the brain remain understudied. Here, we investigated PPG signalling in the Dorsomedial Hypothalamus (DMH), a structure involved in feeding regulation and metabolism, using in situ hybridisation, electrophysiology, and immunohistochemistry. Our experiments were performed on animals fed both control, and high-fat diet (HFD), uncovering HFD-mediated alterations. First, sensitivity to exendin-4 (Exn4, a GLP1R agonist) was shown to increase under HFD, with a higher number of responsive neurons. The amplitude of the response to both Exn4 and oxyntomodulin (Oxm) was also altered, diminishing its relationship with the cells' spontaneous firing rate. Not only neuronal sensitivity, but also GLP1 presence, and therefore possibly release, was influenced by HFD. Immunofluorescent labelling of the GLP1 showed changes in its density depending on the metabolic state (fasted/fed), but this effect was eliminated by HFD feeding. Interestingly, these dietary differences were absent after a period of restricted feeding, allowing for an anticipation of the alternating metabolic states, which suggests possible prevention of such outcome.


Assuntos
Dieta Hiperlipídica , Hipotálamo , Proglucagon , Transdução de Sinais , Animais , Ratos , Hipotálamo/fisiologia , Proglucagon/metabolismo , Ratos Sprague-Dawley , Masculino , Receptor do Peptídeo Semelhante ao Glucagon 1/genética , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 2/genética , Receptor do Peptídeo Semelhante ao Glucagon 2/metabolismo , RNA Mensageiro/metabolismo , Neurônios/metabolismo , Sinapses , Fibras Nervosas/metabolismo , Eletrofisiologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Resposta de Saciedade , Comportamento Alimentar
14.
Elife ; 122023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37265064

RESUMO

The glucagon-like peptide-1 receptor (GLP1R) is a broadly expressed target of peptide hormones with essential roles in energy and glucose homeostasis, as well as of the blockbuster weight-loss drugs semaglutide and liraglutide. Despite its large clinical relevance, tools to investigate the precise activation dynamics of this receptor with high spatiotemporal resolution are limited. Here, we introduce a novel genetically encoded sensor based on the engineering of a circularly permuted green fluorescent protein into the human GLP1R, named GLPLight1. We demonstrate that fluorescence signal from GLPLight1 accurately reports the expected receptor conformational activation in response to pharmacological ligands with high sensitivity (max ΔF/F0=528%) and temporal resolution (τON = 4.7 s). We further demonstrated that GLPLight1 shows comparable responses to glucagon-like peptide-1 (GLP-1) derivatives as observed for the native receptor. Using GLPLight1, we established an all-optical assay to characterize a novel photocaged GLP-1 derivative (photo-GLP1) and to demonstrate optical control of GLP1R activation. Thus, the new all-optical toolkit introduced here enhances our ability to study GLP1R activation with high spatiotemporal resolution.


Assuntos
Peptídeo 1 Semelhante ao Glucagon , Receptor do Peptídeo Semelhante ao Glucagon 1 , Humanos , Receptor do Peptídeo Semelhante ao Glucagon 1/genética , Liraglutida/farmacologia
15.
Gene ; 878: 147589, 2023 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-37364698

RESUMO

OBJECTIVE: To evaluate the relationship between GLP-1R gene polymorphisms and type 2 diabetes mellitus with dyslipidemia and without dyslipidemia in China. METHODS: A total of 200 patients with Type 2 Diabetes Mellitus (T2DM) were included in this study, including 115 with dyslipidemia and 85 without dyslipidemia. We used Sanger double deoxygenation terminal assay and PCR-RFLP to detect genotype of the GLP-1R rs10305420 and rs3765467 loci. T-test was used to analyze the association between gene polymorphisms and lipid indicators. SHEsis online analysis software was used to analyze the linkage balance effect of loci, and SPSS 26 was used to calculate the gene interaction by dominant model. RESULTS: The genotype distribution of the two loci in the sample of this study was in accordance with Hardy-weinberg equilibrium. There were significant differences in the genotype distribution and allele frequency of rs3765467 between T2DM patients with and without dyslipidemia (GG 52.9%, GA + AA 47.1% vs. GG 69.6%, GA + AA 30.4%; P = 0.017). Under the dominant model, the effects of rs3765467 A allele and rs10305420 T allele on dyslipidemia had multiplicative interactions (P = 0.016) and additive interactions (RERI = 0.403, 95% CI [-2.708 to 3.514]; AP = 0.376, 95% CI [-2.041, 2.793]). Meanwhile, HbA1c levels in rs3765467 A allele carriers (GA + AA) were found to be significantly lower than those in patients with GG genotype (P = 0.006). CONCLUSION: The rs3765467 (G/A) variant is associated with the incidence of dyslipidemia, and G allele may be a risk factor for dyslipidemia.


Assuntos
Diabetes Mellitus Tipo 2 , Dislipidemias , Receptor do Peptídeo Semelhante ao Glucagon 1 , Humanos , Estudos de Casos e Controles , China/epidemiologia , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/epidemiologia , Dislipidemias/genética , População do Leste Asiático , Frequência do Gene , Predisposição Genética para Doença , Genótipo , Polimorfismo de Nucleotídeo Único , Receptor do Peptídeo Semelhante ao Glucagon 1/genética
16.
Ter Arkh ; 95(3): 274-278, 2023 Apr 26.
Artigo em Russo | MEDLINE | ID: mdl-37167150

RESUMO

A review of publications devoted to the analysis of genetic polymorphisms of the gene encoding the glucagon-like peptide type 1 receptor and some other genes directly and indirectly involved in the implementation of its physiological action is presented. The aim of the study: to search for information on genes polymorphism that can affect the effectiveness of glucagon-like peptide type 1 agonists. The review was carried out in accordance with the PRISMA 2020 recommendations, the search for publications was based on PubMed databases (including Medline), Web of Science, as well as Russian scientific electronic source eLIBRARY.RU from 1993 to 2022. The several genes polymorphisms (GLP1R, TCF7L2, CNR1, SORCS1, WFS1, PPARD, CTRB1/2) that may affect the course and therapy of type 2 diabetes mellitus, metabolic syndrome and obesity, was described. Single nucleotide substitutions in some regions of these genes can both decrease and increase the clinical efficacy of the treatment of diabetes mellitus and metabolic syndrome with the help of type 1 glucagon-like peptide agonists: exenatide, liraglutide. Data on the role of genetic variations in the structure of the products of these genes in the effectiveness of other type 1 glucacone-like peptide agonists have not been found.


Assuntos
Diabetes Mellitus Tipo 2 , Síndrome Metabólica , Humanos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/genética , Glucagon/uso terapêutico , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Peptídeo 1 Semelhante ao Glucagon/uso terapêutico , Peçonhas/uso terapêutico , Peptídeos/genética , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Receptor do Peptídeo Semelhante ao Glucagon 1/genética , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Receptor do Peptídeo Semelhante ao Glucagon 1/uso terapêutico
17.
J Clin Endocrinol Metab ; 108(11): 2821-2833, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37235780

RESUMO

CONTEXT: Lost glucagon-like peptide 1 receptor (GLP-1R) function affects human physiology. OBJECTIVE: This work aimed to identify coding nonsynonymous GLP1R variants in Danish individuals to link their in vitro phenotypes and clinical phenotypic associations. METHODS: We sequenced GLP1R in 8642 Danish individuals with type 2 diabetes or normal glucose tolerance and examined the ability of nonsynonymous variants to bind GLP-1 and to signal in transfected cells via cyclic adenosine monophosphate (cAMP) formation and ß-arrestin recruitment. We performed a cross-sectional study between the burden of loss-of-signaling (LoS) variants and cardiometabolic phenotypes in 2930 patients with type 2 diabetes and 5712 participants in a population-based cohort. Furthermore, we studied the association between cardiometabolic phenotypes and the burden of the LoS variants and 60 partly overlapping predicted loss-of-function (pLoF) GLP1R variants found in 330 566 unrelated White exome-sequenced participants in the UK Biobank cohort. RESULTS: We identified 36 nonsynonymous variants in GLP1R, of which 10 had a statistically significant loss in GLP-1-induced cAMP signaling compared to wild-type. However, no association was observed between the LoS variants and type 2 diabetes, although LoS variant carriers had a minor increased fasting plasma glucose level. Moreover, pLoF variants from the UK Biobank also did not reveal substantial cardiometabolic associations, despite a small effect on glycated hemoglobin A1c. CONCLUSION: Since no homozygous LoS nor pLoF variants were identified and heterozygous carriers had similar cardiometabolic phenotype as noncarriers, we conclude that GLP-1R may be of particular importance in human physiology, due to a potential evolutionary intolerance of harmful homozygous GLP1R variants.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/genética , Receptor do Peptídeo Semelhante ao Glucagon 1/genética , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Estudos Transversais , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Fenótipo
18.
J Neurosci ; 43(23): 4251-4261, 2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-37127362

RESUMO

The gustatory cortex (GC) region of the insular cortex processes taste information in manners important for taste-guided behaviors, including food intake itself. In addition to oral gustatory stimuli, GC activity is also influenced by physiological states including hunger. The specific cell types and molecular mechanisms that provide the GC with such abilities are unclear. Glucagon-like peptide 1 (GLP-1) is produced by neurons in the brain, where it can act on GLP-1 receptor-expressing (GLP-1R+) neurons found in several brain regions. In these brain regions, GLP-1R agonism suppresses homeostatic food intake and dampens the hedonic value of food. Here, we report in mice of both sexes that cells within the GC express Glp1r mRNA and further, by ex vivo brain slice recordings, that GC GLP-1R+ neurons are depolarized by the selective GLP-1R agonist, exendin-4. Next we found that chemogenetic stimulation of GLP-1R+ neurons, and also pharmacological stimulation of GC-GLP-1Rs themselves, both reduced homeostatic food intake. When mice were chronically maintained on diets with specific fat contents and then later offered foods with new fat contents, we also found that GLP-1R agonism reduced food intake toward foods with differing fat contents, indicating that GC GLP-1R influences may depend on palatability of the food. Together, these results provide evidence for a specific cell population in the GC that may hold roles in both homeostatic and hedonic food intake.SIGNIFICANCE STATEMENT The present study demonstrates that a population of neurons in the GC region of the insular cortex expresses receptors for GLP-1Rs, these neurons are depolarized by agonism of GLP-1Rs, and GC GLP-1Rs can influence food intake on their activation, including in manners depending on food palatability. This work is significant by adding to our understanding of the brain systems that mediate ingestive behavior, which holds implications for metabolic diseases.


Assuntos
Ingestão de Alimentos , Receptor do Peptídeo Semelhante ao Glucagon 1 , Ratos , Masculino , Feminino , Camundongos , Animais , Ingestão de Alimentos/fisiologia , Receptor do Peptídeo Semelhante ao Glucagon 1/genética , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Córtex Insular , Ratos Sprague-Dawley , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Peptídeo 1 Semelhante ao Glucagon/farmacologia
19.
Appl Biochem Biotechnol ; 195(8): 5238-5251, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37140780

RESUMO

Non-alcoholic fatty liver disease is mostly associated with diabetes mellitus. Dulaglutide is approved in type 2 diabetes as a hypoglycemic agent. However, its effects on liver fat and pancreatic fat contents are not evaluated yet. The objectives of the study were to evaluate the effects of dulaglutide on liver fat content, pancreatic fat content, liver stiffness, and liver enzyme levels. Patients have taken 0.75 mg subcutaneous dulaglutide each week for 4 weeks, then 1.5 mg weekly for 20 weeks plus standard treatment (metformin plus sulfonylurea and/or insulin; DS group, n = 25), or patients have taken standard treatment (metformin plus sulfonylurea and/or insulin) alone (ST group, n = 46) for type 2 diabetes management. Both groups reported a decrease in liver fat content, pancreatic fat content, and liver stiffness after interventions (p < 0.001 for all). After interventions, the DS group reported a higher decrease in liver fat content, pancreatic fat content, and liver stiffness than that of the ST group (p < 0.001 for all). After interventions, the DS group reported a higher decrease in body mass index than that of the ST group (p < 0.05). There were significant improvements in liver function tests, kidney function tests, lipid profiles, and blood counts after interventions (p < 0.05 for all). Both groups reported a decrease in body mass index after interventions (p < 0.001 for both). The DS group significantly decrease body mass index after interventions (p < 0.05) than the ST group.


Assuntos
Diabetes Mellitus Tipo 2 , Fígado Gorduroso , Metformina , Humanos , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/genética , Receptor do Peptídeo Semelhante ao Glucagon 1/genética , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Metabolismo dos Lipídeos , Hipoglicemiantes/uso terapêutico , Metformina/farmacologia , Insulina/metabolismo , Glicemia/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...